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The Method of Lines for the Analysis of
Planar Waveguides with Finite
Metallization Thickness

Franz J. Schmiickle and Reinhold Pregla, Senior Member, IEEE

Abstract —The method of lines has been applied to many different
planar waveguide structures, but up to now only infinitely thin metal-
lizatiens have been considered. In this paper it will be shown how the
method can be extended for the analysis of waveguides with finite
metallization thickness. The results for microstrip and finline are pre-
sented and compared with those of other authors.

1. INTRODUCTION

N most analyses of planar waveguides the metallizations

are assumed to be infinitely thin. With the decreasing
dimensions of monolithic integrated microwave circuits, this
assumption must be discarded, because both the cross-sec-
tional dimensions and the wavelength are of the same order
of magnitude. Microstrip lines and finlines with finite metal-
lization thickness have been investigated with various proce-
dures, for example, with full-wave-analyses [1]-[3], with the
conformal mapping technique [4], [5], and with the point-
matching method [6]. In the present paper the method of
lines (MoL) {7], [8] is extended to calculate the properties of
the wave propagation in shielded microstrip lines and fin-
lines with finite metallization thickness. The extension is
straightforward, because there is no change in the principles
of the MoL in inserting the additional layers necessary to
consider the finite thick metallizations.

Contrary to the previous investigations where the layers
have been completely filled with dielectric, the additional
layers are split into regions of dielectric and metallization
respectively. The ranges of the metallization thicknesses are
not restricted in the numerical treatment. Therefore metal-
lizations substantially thicker than in the point-matching
method [6] are computed. For small thicknesses it is possible
to obtain the dispersion constant with only one calculation
when choosing a certain discretization which depends on an
optimal edge parameter p,,. In this case, the advantage of
the MoL is particularly clear because only a small number of
discretization lines are necessary in the calculation. Hence
the computing time is very small.

II. THEORY

The investigated shielded waveguide (Fig. 1) includes lay-
ers which are filled only with dielectrics as well as a layer
with alternating dielectric and metallization regions. An ex-
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Fig. 1. Waveguide structure with finite thickness of the metalliza-

tion ¢.

tension of the analysis for structures with metallizations in
more than one layer is easily possible. The analysis is de-
scribed in detail in [7] and therefore is not repeated here.
Just the essential parts of the method and its extension are
summarized in the following steps.

1) The electromagnetic ficlds are calculated from the in-
dependent field components E, and H,. The other field
components are derived from these by using Maxwell’s equa-
tions.

2) The fields, the field equations, and the wave equations
(Helmholtz equations for E, and H,) of each layer, as well
as those of the slots in layer II, are discretized in one
direction (along the x coordinate in Fig. 1).

3) The resulting differential equations are decoupled by
several suitable mathematical transformations and then ana-
Iytically solved along the y coordinate. Different transforma-
tion matrices are applied owing to the different line numbers
in layers I and III on the one hand and in the slots of layer II
on the other hand. The relations between the transformed
tangential fields at the interfaces to the adjacent layers are
now calculated with those solutions and yield
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4) To prepare the ficld matching in the spatial domain, it
is necessary to transform back (1) and (2) with the corre-
sponding transformation matrices. The inverse transform of
(1) is then split into two systems of equations, (3) and (4),
where system (3) describes the relations between the fields at
the intetfaces A and B of the slots in layer II, and system (4)
describes the relations between the currents J on the strips
and the fields at the interfaces 4 and B of the slots:

Hgjoid = f(Egiow) (3)
Tsips = F(Ediold)- (4)

In the following steps only (3) is used. To obtain this equa-
tion the inverse transform of (1) is done with the reduced
transformation matrices T{ = T};; (6), which are rectangular
and consist of those rows of the complete transformation
matrices 7| y; (5) which correspond to the discretization
lines crossing any of the slots of layer II.
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Hence from (1) it follows that
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Analogously all field relations in the slots of layer II are
transformed back and the resulting i =1, M +1 systems of
equations is summarized in (8) corresponding to the
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Fig. 2. Position of the discretization lines in the environment of a
metallization edge.
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Fig. 3. Cross section of the investigated microstrip line.
structure in (7):
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with Tj; = Diag(Ty,); i=1,M +1.
5) The field matching in the spatial domain follows with
(7) and (8) and yield the homogeneous equation

(ful;“iﬁ - 7~‘lrl;l’ mT"l’.,)EAB, stots = 0- (9)
From the nontrivial solution of this homogeneous equation

the electrical characteristics of the wave propagation are
calculated.

II1. REsuLTs

The convergence behavior of the calculated results de-
pends on the position of the metallization edges in relation
to the adjacent discretization lines, described by the edge
parameter p in Fig. 2. Because of the discretization on two
families of lines the position of the edge in Fig. 2 is restricted
to the interval from p=0 (E, line)--- p <0.5 (up to, but
not including, the following H, line). For infinite thickness
an optimal convergence is obtained when positioning the
edge at p=0.25 [8]. Fig. 3 shows the cross section of the
investigated microstrip line and (a) and (b) of Fig. 4 show the
corresponding convergence behavior of the dispersion con-
stant for varying edge parameters p and different thick-
nesses (f =1 um, 10 wm) of the metallization. For the finline
structure (Fig. 5), the convergence investigation is shown in
parts (a) and (b) of Fig. 6 even for varying edge parameters p
and different thicknesses (r =1 um, 15 wm) of the fins.
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Fig. 4. (a) Convergence of the dispersion constant versus the dis-
cretization distance (microstrip line ¢ =6.0 mm, w = 0.6 mm, b = 0.635
mm, ¢ =100.0 mm, ¢,; =10, t =1 um). (b) Convergence of the disper-
sion constant versus the discretization distance (microstrip line, see Fig.
4(a) with £ =10 um).
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Fig. 5. Cross section of the investigated finline.

The slopes of the penciled curves reach from positive to
negative values, so that a curve with a slope of nearly zero
can be found. The corresponding edge parameter is then the
optimal edge parameter, p,. From Figs. 4(a) and (b) and
6(a) and (b) and further convergence calculations, optimal
edge parameters, Popts Ar€ obtained and are shown in Fig. 7
depending on the thickness of the metallizations. Using this
optimal edge parameter, p,,, in the calculation yields a
convergence curve for the dispersion constant e,,, which
runs nearly at a constant value. Hence only one computation
with a small line number is necessary to obtain an accurate
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Fig. 6. (a) Convergence of the dispersion constant versus the dis-
cretization distance (finline a=6.0 mm, s=0.6 mm, b=d =5.5 mm,
c=10mm, €, =5, €,,=97. t=1 um). (b) Convergence of the disper-
sion constant versus the discretization distance (finline, see Fig. 6(a)
with ¢ =15 um)
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Fig. 7. Optimal edge parameter, p,,, versus metallization thickness ¢.

value of ¢,,, which is very close to the exact dispersion
constant e,., = €,.{(# = 0). As the reason for this behavior, it
is assumed that the ficlds at the edges of the metallizations,
especially of thin ones, are better approximated by consider-
ing the optimal edge parameter, p,y, in the calculation.
With increasing thickness the family of curves, compared
with the extrapolated e, is shifted more and more upward,
and the curves become more bent with increasing p. When
exceeding a certain thickness ¢ all calculated points are
greater than €, and an optimal edge parameter p,, cannot
be determined. Nevertheless structures with a greater thick-
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Fig. 8. (a) Dispersion of a microstrip line (a=9-w, b=3.04 mm,
c¢=100.0 mm, €,,=11.7) -——: results from [5] (open structure).
(b) Current density on the strip (subscript /: lower side of the strip.
subscript u: upper side of the strip, J,=J,(x =0), f = 0.5 GHz).

ness of metallization were calculated and therefore conver-
gence investigations became necessary. In these calculations
the edge parameter p has been chosen to be less than 0.1 to
obtain monotonically decreasing convergence curves, which
are easy to extrapolate.

Fig. 8(a) shows the dispersion constants of a microstrip
line with varying thickness ¢ and width w of the strip,
compared with results from [5]. The deviations of the disper-
sion constants at low frequences in this figure are explained
by the effect of the shielding. Fig. 8(b) represents the current
densities J, on the surface of the strip of the corresponding
microstrip lines of Fig. 8(a). Due to the fast rising curve of
the currents J, in the regions close to the edges, an accurate
calculation of the current distribution in these regions is not
possible.The deviation of the computed current from the
exact current increases, particularly very close the edges.
Hence in Fig. 8(b) these regions are not considered.

Parts (a) and (b) of Fig. 9 show the dispersion constant of
a finline with varying thickness ¢ of the metallization, com-
pared with results from [3], as well as the current density.
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Fig. 9. (a) Dispersion of a finline (a = 2.3876 mm, s = 0.24. b = 2.2606
mm, ¢ =0.127 mm, d =23876 mm—r. €, = 1.0, ¢,, = 3.8) ———: results
from [3]. (b) Current density (subscript /: lower side of the strip,
subscript u: upper side of the strip, J,=J (x =0), f =21 GHaz).

1V. ConcrLusions

The method of lines is well suited to calculate waveguide
structures even with finite metallization thickness. The nor-
mally used range of metallization thickness is not a limit for
the method. Particularly when calculating small or moderate
thicknesses, it is possible to derive the dispersion constant
with only one computed result. When using the optimal edge
parameter, p,, for that computation the deviation from the
exact dispersion constant is less than 0.5%. The advantage of
the method of lines is that only small line numbers are
necessary. Hence the computing time is very small.
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